ANTI-CELL WALL ANTIBACTERIAL DRUGS

Selective toxicity is the important characteristic of antimicrobial drugs which means that any drug is selective against a particular microorganism and also selectively act on a particular site. Not all drugs can act on every site. There are many sites at which any drug acts such as cell wall, cell membrane of the bacterial cell. Basically selective toxicity explains that any drug will only act on the pathogen and not on the host.
ANTI-CELL WALL DRUGS
Anti-cell drugs are those drugs which act on the cell wall of the bacterial pathogen and not the host. There are variety of drugs which fall under this category. The major class is of beta-lactam antibiotics among which penicillin is the drug which is studied the most. The drugs can be administered into the patient’s body by different ways like intramuscular, intravenous, or can be applied as topical preparations. But mostly, these drugs are intramuscular or intravenous drugs. The following points explain the further different mechanisms of anti-cell wall drugs.
There are 3 different mechanisms by which anti-cell wall drugs work and thus they are also classified as following:

  1. First classification involves the drugs that directly interact with Penicillin-Binding-Proteins (PBPs) and inhibit the transpeptidase activity which in turn inhibits the attachment of newly formed peptidoglycan subunit to the pre-existing one.
    This is the main mechanism of β-lactam antibiotics. These antibiotics include Penicillin (penams), cephalosporins, Penems, Carbapenems, and monobactams.
    These antibiotics bind to the penicillin-binding proteins which are enzymes present in the bacterial cell wall. Different β-lactam antibiotics bind in a different way. After the antibiotics bind to the enzyme, it changes the morphological response of the bacteria to the antibiotic.
  2. Second classification involves the drugs that bind to the peptidoglycan subunit, blocking different processes.
    The important class of compounds called as glycopeptides are mainly involved in this mechanism of anti-cell wall antibiotics.
    Vancomycin and Teicoplanin are the major examples of glycopeptide antibiotics.
    Vancomycin kills only gram-poitive bacteria whereas Teicoplanin is active against both. The overall mode of action of glycopeptides antibiotics is blocking transpeptidation i.e. similar to β-lactam antibiotics, they also inhibit the transpeptidase activity, and transglycosylation i.e. they being large in size attach to the peptidoglycan subunits thus creating a blockage which does not allow the cell wall subunits to attach to the growing peptidoglycan backbone.
  3. Third classification involves the drugs that block the transport of peptidoglycan subunits across cytoplasmic membrane.
    The main example of such type of drugs is bacitracin, which is a simple peptide antibiotic originally isolated from Bacillus subtilis.
    The mode of action of these class of drugs is blocking the activity of specific cell membrane lipid carriers which act as the attachment surface for peptidoglycan precursors and help in their movement from cell cytoplasm to exterior of the cell. This activity of lipid carriers is inhibited by bacitracin like drugs and they finally prevent the incoroporation of those precursors into cell wall thus inhibiting its biosynthesis.

Although, its route of administration is mostly oral or intramuscular, bacitracin is also known to show its effects when used as topical ointments like Neosporin.

MECHANISM OF DIFFERENT TYPES OF ANTIBIOTICS

Antibacterial Drugs are classified according to their site of action which are as follows :

CELL WALL SYNTHESIS INHIBITORS
There are 3 different mechanisms by which anti-cell wall drugs work and thus they are also classified as following:

  1. First classification involves the drugs that directly interact with Penicillin-Binding-Proteins (PBPs) and inhibit the transpeptidase activity which in turn inhibits the attachment of newly formed peptidoglycan subunit to the pre-existing one.
    This is the main mechanism of β-lactam antibiotics. These antibiotics include Penicillin (penams), cephalosporins, Penems, Carbapenems, and monobactams.
    These antibiotics bind to the penicillin-binding proteins which are enzymes present in the bacterial cell wall. Different β-lactam antibiotics bind in a different way. After the antibiotics bind to the enzyme, it changes the morphological response of the bacteria to the antibiotic.
  2. Second classification involves the drugs that bind to the peptidoglycan subunit, blocking different processes.
    The important class of compounds called as glycopeptides are mainly involved in this mechanism of anti-cell wall antibiotics.
    Vancomycin and Teicoplanin are the major examples of glycopeptide antibiotics.
    Vancomycin kills only gram-poitive bacteria whereas Teicoplanin is active against both. The overall mode of action of glycopeptides antibiotics is blocking transpeptidation i.e. similar to β-lactam antibiotics, they also inhibit the transpeptidase activity, and transglycosylation i.e. they being large in size attach to the peptidoglycan subunits thus creating a blockage which does not allow the cell wall subunits to attach to the growing peptidoglycan backbone.
  3. Third classification involves the drugs that block the transport of peptidoglycan subunits across cytoplasmic membrane.
    The main example of such type of drugs is bacitracin, which is a simple peptide antibiotic originally isolated from Bacillus subtilis.
    The mode of action of these class of drugs is blocking the activity of specific cell membrane lipid carriers which act as the attachment surface for peptidoglycan precursors and help in their movement from cell cytoplasm to exterior of the cell. This activity of lipid carriers is inhibited by bacitracin like drugs and they finally prevent the incoroporation of those precursors into cell wall thus inhibiting its biosynthesis.

Although, its route of administration is mostly oral or intramuscular, bacitracin is also known to show its effects when used as topical ointments like Neosporin.

INHIBITORS OF PROTEIN SYNTHESIS
Protein Inhibitors can be divided into 2 parts:

  1. Inhibitors binding to 30S subunits
    • Aminoglycosides bind to the bacterial ribosome, after which they cause tRNA mismatching and thus protein mistranslation.
    This occurs by mismatching between codons and anticodons, which synthesize proteins with incorrect amino acid. This mistranslated protein, along with correctly translated proteins move into move into the periplasm where most of the mistranslated proteins are degraded and some of them are inserted into cytoplasmic membrane. This causes disruption of the membrane, ultimately killing the bacterial cells.
    • Tetracyclines are bacteriostatic and block the binding of tRNAs with the ribosome during translation thus inhibiting protein synthesis. Most of the tetracycline class of drugs are broad spectrum and are active against wide range of bacteria.
  2. Inhibitors binding to the 50S subunit
    • Macrolides are the large class of naturally produced secondary antibiotics. They are basically broad spectrum, bacteriostatic antibiotics. Their main mode of action is blocking peptide chain elongation and they inhibit the formation of peptide bond.
    Patients allergic to penicillins are recommended erythromycin which is a macrolide.
    • Lincosamides include lincomycin and clindamycin. Though they are structurally different but functionally similar to macrolides. They are specifically known to inhibit streptococcal and staphylococcal infections.
    • Chloramphenicol also inhibits peptidyl transferase reaction inhibiting peptide bond formation. It was the first broad spectrum antibiotic and is very much active against a broad range of bacterial pathogens but is very toxic and can cause side.

INHIBITORS OF MEMBRANE FUNCTION
Biological cytoplasmic membranes are basically composed of lipids, proteins and lipoproteins. The cytoplasmic membrane acts as a selective barrier which allows the transport of materials between inside the cell and the environment.
A number of antibacterial agents work by targeting the bacterial cell membrane. They basically are involved in the disorganization of the membrane. Polymyxins and Lipopeptides are the main anti- cell membrane agents.

NUCLEIC ACID SYNTHESIS INHIBITORS
These drugs inhibit nucleic acid synthesis function by either of the following:

  1. Interfere with RNA of bacterial cell
    Antibacterial drugs of this mechanism are selective against bacterial pathogenic cells.
    For example: The drug rifampin, belonging to the drug class rifamycin blocks the bacterial RNA polymerase activity. It is also active against Mycobacterium tuberculosis and thus id used in the treatment of tuberculosis infection. It also shows side effects.
  2. Interfere with DNA of bacterial cell
    There are some antibacterial agents that interfere with the activity of DNA gyrase.
    The drug class fluoroquinolones show this mechanism. They are borad spectrum antibacterial agents. Some examples of drugs in fluoroquinolone family are Ciprofloxacin, Ofloxacin, Moxifloxacin, etc

INHIBITORS OF METABOLIC PATHWAYS
There are some antibacterial drugs which act as ANTIMETABOLITES and inhibits the metabolic pathways of bacteria.
• The sulfonamides block the production of dihydrofolic acid.
This blocks the production of purines and pyrimidines required for nucleic acid synthesis by blocking the biosynthesis of folic acid. Their mechanism of action is bacteriostatic and they are broad spectrum antibacterial agents. Though humans also obtain folic acid but these drugs are selective against bacteria.
Sulfones are also structurally and functionally similar to sulfonamides.
• Trimethoprim is used in the same folic acid synthesis pathway but at a different phase, in the production of tetrahydrofolic acid.
• There is another drug, Isoniazid which is an antimetabolite only selective against mycobacteria. It can also be used to treat tuberculosis when used in combination with rifampin and streptomycin.

INHIBITORS OF ATP SYNTHASE
There is a class of drug compounds called as Diarylquinolones that are specifically active against mycobacterial growth. They block the oxidative phosphorylation process and finally leading to reduced ATP production which either kill or inhibit the growth of mycobacterial species.

CHEMICAL AGENTS IN MICROBIAL CONTROL

The chemical agents are mostly employed in disinfection and antisepsis. The proper use of these agents is essential to laboratory and hospital safety. Many disinfectants are available and each has its own advantages and disadvantages, but ideally the disinfectant must be effective against a wide variety of infectious agents. The disinfectant must be stable upon storage, odorless, or with pleasant order, soluble in water and lipids for penetration into microorganisms, and have a low surface tension through that it can enter cracks in surfaces.

  1. Phenols
    In 1867, Joseph Lister employed it to reduce the risk of infection during operations and phenol was the first widely used antiseptic and disinfectant. Today phenol and phenolics such as cresols, xylenols, and orthophenylphenol are used as disinfectants in laboratories and hospitals. Lysol is made of a mixture of phenolics which is commercially available disinfectant. They act by denaturing proteins and disrupting cell membranes.
  2. Alcohols
    Alcohols are the most widely used disinfectant and antiseptic. They are bactericidal and fungicidal but not sporicidal. Ethanol and isopropanol are the two most popular alcohol germicides. Small instruments like thermometers can be disinfected by soaking them for 10 to 15 minutes in alcohol solutions. 70% ethanol is more effective than 95% as water is needed for proteins to coagulate.
  3. Halogens
    Halogens exist as diatomic molecules in the free state and form salt like compounds with sodium and most other metals. Iodine and chlorine are the most important antimicrobial agents. Spores can be destroyed at higher concentration. Iodine is often applied as tincture of iodine, 2% or more iodine in a water-ethanol solution of potassium iodide. Skin scars result and sometimes iodine allergies can result.
    Chlorine is mostly used as a disinfectant for municipal water supplies and swimming pools and also employed in dairy and food industry. It may be applied as chlorine gas, sodium hypochlorite or calcium hypochlorite, all of which yield hypochlorous acid and then atomic oxygen.
  4. Heavy metals
    Heavy metals such as mercury, silver, arsenic, zinc and copper were used as germicides and these have nit been most recently superseded by other less toxic and more effective germicides. A 1% solution of silver nitrate if often added to the eyes of infants to prevent ophthalmic gonorrhea but now erythromycin is used instead of silver nitrate because it is more effective. Silver sulfadiazine is used on burns. Copper sulphate is an effective algicide in lakes and swimming pools. The action of these heavy metals is mostly on the proteins, and they combine often with their sulfhydryl groups, and inactivate them. They may also precipitate cell proteins.
  5. Quaternary ammonium compounds
    Detergents are organic molecules that serve as wetting agents and emulsifiers and are amphipathic in nature and hence solubilize otherwise insoluble residues and are very effective cleansing agents and are efficient from soaps, which are derived from fats.
    Only cationic detergent are effective disinfectants characterized by positively charged quaternary nitrogen and a long hydrophobic aliphatic chain. They are mostly used as disinfectants for food utensils and small instruments and as skin antiseptics.
  6. Sterilizing gases
    Gases may also be used as sterilizing agents in order to sterilize many heat-sensitive items such as disposable petri dishes and many syringes, heat-lung machine components, sutures, etc. Ethylene oxide gas is used for this purpose as it readily penetrates packing materials, even plastic wraps and is both microbicidal and sporicidal and kills by combining with cell proteins.
  7. Hydrogen peroxide
    Hydrogen peroxide effects our direct and indirect actions of oxygen as it forms hydroxyl free radical which is highly toxic and reactive to cells. As an antiseptic, 3% hydrogen peroxide serves a variety of needs including skin and wound cleansing, bedsore care and mouth washing. When it is applied to a wound, the enzyme catalase in the tissue decomposes the hydrogen peroxide into water and free oxygen. The oxygen causes the wound tissues to bubble and the bubbling removes microorganism mechanically.
  8. Acids and alkalis
    Aqueous solutions of ammonium hydroxide remain a common component of detergent, cleanser and deodorizers. Organic acids are widely used in food preservatives because they prevent spore germination and bacterial and fungal growth. Acetic acid in the form of vinegar is a picking agents that inhibits bacterial growth, propionic acid is commonly incorporated into breads and cakes to retard molds, benzoic acid and sorbic acids are added to beverages, syrups to inhibit yeasts.

USE OF PHYSICAL METHODS IN MICROBIAL CONTROL

Although microorganisms are beneficial and necessary for human well being, microbial activities have undesirable consequences such as food spoilage and disease. To minimize there destructive effects, it is essential to kill a wide variety of microorganisms or inhibit their growth.

  1. Heat
    Heating is still one of the most popular ways to destroy microorganisms. Fire and boiling water have been used since the time of Greeks for sterilization and disinfection. Exposure to boiling water for 10 minutes is sufficient to kill or destroy vegetative cells and eukaryotic spores, but not enough to kill or destroy bacterial endospores, hence boiling does not sterilize but can be used for disinfection of drinking water and objects not harmed by water. This can be carried out within an autoclave. Hot and saturated steam enters a chamber and the desired temperature and pressure which is usually 121°C and 15 pounds is reached. At this temperature and pressure the steam destroy all vegetative cells and endospores. Moist heat is thought to kill so effectively by degrading nucleic acids and by denaturing enzymes and other essential proteins It may also disrupt cell membranes.
    Pasteurization is a process where many substances such as milk, are treated with controlled heating at temperatures well below boiling. There are two types of pasteurization- flash pasteurization or high temperature short term (HTST) pasteurization and the other method used is ultra high temperature (UHT) pasteurization.
    Dry heat sterilization can also be used on many objects in the absence of water. The items to be sterilized are placed in an oven at 160 to 170°C.
  2. Low temperatures
    Another convenient method to inhibit the growth and reproduction of microorganisms is to use lower temperatures like freezing or refrigeration. Mostly this method of control is used in food microbiology. Freezing items at -20°C or lower stops microbial growth because of the absence of liquid water and the ice crystal destruction of cell membranes at this temperature. This method is also used for long term storage of microbial samples in the laboratory in the form of glycerol stocks. This method of control at low temperatures slows microbial growth and reproduction but does not half it completely. Fortunately most pathogens are mesophilic and do not grow well at low temperatures around 4°C. Thus, refrigeration is a good technique only for short-term storage of food and other items.
  3. Filtration
    The filters simply remove the microbes instead of killing them. The material used mostly is glazed porcelain, asbestos or other similar materials. Membrane filters are also used and have replaced depth filters in recent times. These filters are used to remove most vegetative cells, but not viruses from solutions ranging in volume from 1 ml to many liters.
    The other way this method is used is in the laminar flow biological safety cabinet where the air is sterilized by filtration. These cabinets contain high efficiency particulate air(HEPA) filters.
  4. Radiation
    The radiations like ultraviolet and ionizing can be used for sterilizing objects. UV radiation is used as a sterilizing agent only in a few specific situations like UV lamps are placed on the ceilings of room for in biological safety cabinet to sterilize air and other exposed surfaces. Commercial UV units are available for water treatment. Pathogens and microorganisms are destroyed when a thin layer of water is passed under the lamps (water purifiers).
    Ionizing radiation penetrates deep into objects and is an excellent sterilizing agent. It destroys bacterial endospores and vegetative cells of both prokaryotic and eukaryotic origin but not against viruses. Gamma radiation from a Cobalt 60 source is used in the cold sterilization of antibiotics, hormones and plastic disposable supplies such as syringes and petri dishes.