YOGA – ORIGIN AND BENEFITS

Yogasana has its roots in ancient India. The Rig Veda, a sacred book for the Indian Hindu community, mentioned the word Yoga, for the very first time, around 5,000 years ago. The word was coined from the Sanskrit word ‘Yuj’, which means to join or to unite. Yoga is among the six schools of philosophy of Hinduism and is also a major part of Buddhism. The practice of Yoga is considered as a subtle harmony between the mind and the body. This science was developed by the ancient sages to overcome all kinds of sufferings and attain Moksha (liberation). The Hindu God Shiva, is called as the ‘Adiyogi’ for being the first preacher of Yoga. He was the supreme one to spread the knowledge of the bodily art form among the saints, who later took it across various places and people. Later on, the Brahmanic scholars, documented these practices in the Upanishads (Indian Sacred Literature). The westerners believed Yoga to be postured based physical activity which helps relieve stress. Yoga is also classified by different religions, into different forms such as Classical Yoga, Advaita Vedanta, Buddhist Yoga, Jain Yoga, Tantric Yoga, Hatha Yoga, Laya Yoga, etc.

Practice Of Yogasanas is extremely beneficial in several ways :

  • Yoga does help in attaining a sufficient level of flexibility. In the beginning, one may feel a pull in their hamstrings or tendons. But gradually, over hours of dedicated practice, one can attain flexibility, which is essential for a good posture.
  • Yoga helps in maintaining a stable heart rate. Practice of yoga daily, improves cardiovascular functioning. People who are engaged into Pranayama (breathing exercise) on a regular basis are able to perform several activities even with a lesser amount of oxygen supply.
  • Yoga helps one to calm the mind and relax the senses. Thus, a calmness in mind, in turn helps in better concentration. This assists in improvement of the I.Q levels and helps maintain a steady focus.
  • Yoga along with breathing techniques such as Ocean Breathing can help cure Insomnia. It can help a person to fall asleep quicker than usual, sleep for a longer duration and feel relaxed after waking up.
  • Yoga is also beneficial for boosting one’s self esteem and confidence. It trains a person to be more patient, maintain perseverance and gives the strength to work tiredlessly towards one’s goal.
  • Yoga tends to make people happier. According to various reports, even a single class can begin to change your brain chemistry. The increased blood flow in the body, helps keep Cortisol (a stress hormone) at bay. Thus, all of this adds up to making a person happy.

Yoga can be termed as a medicine that can cure nearly every human problem. Lifelong commitment to Yoga can improve mental and physical well being. The Bhagvad Gita states, “Yoga is the journey of the self, through the self, to the self.” Imparting knowledge about Yoga, shall begin from the foundation years of children, to inculcate lifelong values of discipline and endurance in them.

Council raises GST on low-cost footwear, garments to 12%

In its first physical meeting in two years, the GST Council on Friday effected several long-pending tweaks in tax rates including an increase in the GST levied on footwear costing less than ₹1,000 as well as readymade garments and fabrics to 12% from 5%.

The new rates on these products, a decision on which had been deferred by the Council over the past year owing to the pandemic’s impact on households, will come into effect from January 1, Finance Minister Nirmala Sitharaman said.

The Council approved a special composition scheme for brick kilns with a turnover threshold of ₹20 lakh, from April 1, 2022. Bricks would attract GST at the rate of 6% without input tax credits under the scheme, or 12% with input credits.

While this will please States like Uttar Pradesh that had sought a special scheme for brick kilns, a decision on extending such a scheme for other evasion-prone sectors like pan masala, gutkha and sand mining was put off.


The Council also decided to extend the concessional tax rates granted for COVID-19 medicines like Amphotericin B and Remdesivir till December 31, but similar sops offered by the Council at its last meeting in June for equipment like oxygen concentrators will expire on September 30.

The GST rate on seven more drugs useful for COVID-19 patients has been slashed till December 31 to 5% from 12%, including Itolizumab, Posaconazole and Favipiravir. The GST rate on Keytruda medicine for treatment of cancer has been reduced from 12% to 5%.

Life-saving drugs Zolgensma and Viltepso used in the treatment of spinal muscular atrophy, particularly for children, has been exempted from GST when imported for personal use. These medicines cost about ₹16 crore, Ms. Sitharaman said.

Food delivery tax shift
The Council also decided to make food delivery apps like Swiggy and Zomato liable to collect and remit the taxes on food orders, as opposed to the current system where restaurants providing the food remit the tax.

Revenue Secretary Tarun Bajaj stressed this did not constitute a new or extra tax, just the tax that was payable by restaurants would now be paid by aggregators. Some restaurants were avoiding paying the GST even though it was billed to customers.

“The decision to make food aggregators pay tax on supplies made by restaurants from January 1, 2022, seems to have been done based on empirical data of under reporting by restaurants, despite having collected tax on supplies of food to customers,” said Mahesh Jaising, Partner, Deloitte India.

“The impact on the end consumer is expected to be neutral where the restaurant is a registered one. For those supplies from unregistered, there could be a 5% GST going forward,” he added.

Aircraft on lease
The GST Council has exempted Integrated GST levied on import of aircraft on lease basis. This will help the aviation industry avoid double taxation, the Finance Minister said, and will also be granted for aircraft lessors who are located in Special Economic Zones.

Goods supplied at Indo-Bangladesh border haats have also been exempted from GST.

Written by: Ananya Kaushal

Phenotype

The phenotype (from Greek o- (faino-)’showing’ and (tpos) ‘type’) is a set of observable features or qualities of an organism in genetics. The phrase refers to an organism’s morphology, or physical shape and structure, as well as its developmental processes, biochemical and physiological features, behaviour, and behavioural outcomes. The expression of an organism’s genetic code, or genotype, and the effect of environmental variables are the two primary components that determine its phenotype. Both factors may interact, altering phenotype even more. When two or more clearly different phenotypes exist in the same population of a species, the species is called polymorphic.

Phenotypic variation

Phenotypic variation (due to underlying heritable genetic variation) is a fundamental prerequisite for evolution by natural selection. It is the living organism as a whole that contributes (or not) to the next generation, so natural selection affects the genetic structure of a population indirectly via the contribution of phenotypes. Without phenotypic variation, there would be no evolution by natural selection.

The interaction between genotype and phenotype has often been conceptualized by the following relationship:genotype (G) + environment (E) → phenotype (P)

A more nuanced version of the relationship is:genotype (G) + environment (E) + genotype & environment interactions (GE) → phenotype (P)

Genotypes often have much flexibility in the modification and expression of phenotypes; in many organisms these phenotypes are very different under varying environmental conditions (see ecophenotypic variation). The plant Hieracium umbellatum is found growing in two different habitats in Sweden. One habitat is rocky, sea-side cliffs, where the plants are bushy with broad leaves and expanded inflorescences; the other is among sand dunes where the plants grow prostrate with narrow leaves and compact inflorescences. These habitats alternate along the coast of Sweden and the habitat that the seeds of Hieracium umbellatum land in, determine the phenotype that grows.

An example of random variation in Drosophila flies is the number of ommatidia, which may vary (randomly) between left and right eyes in a single individual as much as they do between different genotypes overall, or between clones raised in different environments.[citation needed]

The concept of phenotype can be extended to variations below the level of the gene that affect an organism’s fitness. For example, silent mutations that do not change the corresponding amino acid sequence of a gene may change the frequency of guaninecytosine base pairs (GC content). These base pairs have a higher thermal stability (melting point) than adeninethymine, a property that might convey, among organisms living in high-temperature environments, a selective advantage on variants enriched in GC content.

The extended phenotype[edit]

Main article: The Extended Phenotype

Richard Dawkins described a phenotype that included all effects that a gene has on its surroundings, including other organisms, as an extended phenotype, arguing that “An animal’s behavior tends to maximize the survival of the genes ‘for’ that behavior, whether or not those genes happen to be in the body of the particular animal performing it.” For instance, an organism such as a beaver modifies its environment by building a beaver dam; this can be considered an expression of its genes, just as its incisor teeth are—which it uses to modify its environment. Similarly, when a bird feeds a brood parasite such as a cuckoo, it is unwittingly extending its phenotype; and when genes in an orchid affect orchid bee behavior to increase pollination, or when genes in a peacock affect the copulatory decisions of peahens, again, the phenotype is being extended. Genes are, in Dawkins’s view, selected by their phenotypic effects.

Other biologists broadly agree that the extended phenotype concept is relevant, but consider that its role is largely explanatory, rather than assisting in the design of experimental tests.

Epigenetics

Epigenetics is the study of heritable phenotypic modifications that do not entail DNA sequence changes in biology. [1Epigenetics is defined by features that are “on top of” or “in addition to” the usual genetic foundation for heredity. The Greek prefix epi- (- “over, outside of, surrounding”) denotes traits that are “on top of” or “in addition to” the traditional genetic basis for inheritance. Modifications in gene activity and expression are the most common epigenetic changes, although the phrase can also refer to any heritable phenotypic change. External or environmental influences may have an effect on cellular and physiological phenotypic features, or they may be a normal aspect of development.

Molecular basis

Epigenetic changes modify the activation of certain genes, but not the genetic code sequence of DNA. The microstructure (not code) of DNA itself or the associated chromatin proteins may be modified, causing activation or silencing. This mechanism enables differentiated cells in a multicellular organism to express only the genes that are necessary for their own activity. Epigenetic changes are preserved when cells divide. Most epigenetic changes only occur within the course of one individual organism’s lifetime; however, these epigenetic changes can be transmitted to the organism’s offspring through a process called transgenerational epigenetic inheritance. Moreover, if gene inactivation occurs in a sperm or egg cell that results in fertilization, this epigenetic modification may also be transferred to the next generation.

Specific epigenetic processes include paramutationbookmarkingimprintinggene silencingX chromosome inactivationposition effectDNA methylation reprogrammingtransvectionmaternal effects, the progress of carcinogenesis, many effects of teratogens, regulation of histone modifications and heterochromatin, and technical limitations affecting parthenogenesis and cloning.

DNA damage

DNA damage can also cause epigenetic changes. DNA damage is very frequent, occurring on average about 60,000 times a day per cell of the human body (see DNA damage (naturally occurring)). These damages are largely repaired, but at the site of a DNA repair, epigenetic changes can remain. In particular, a double strand break in DNA can initiate unprogrammed epigenetic gene silencing both by causing DNA methylation as well as by promoting silencing types of histone modifications (chromatin remodeling – see next section). In addition, the enzyme Parp1 (poly(ADP)-ribose polymerase) and its product poly(ADP)-ribose (PAR) accumulate at sites of DNA damage as part of a repair process. This accumulation, in turn, directs recruitment and activation of the chromatin remodeling protein ALC1 that can cause nucleosome remodeling. Nucleosome remodeling has been found to cause, for instance, epigenetic silencing of DNA repair gene MLH1. DNA damaging chemicals, such as benzenehydroquinonestyrenecarbon tetrachloride and trichloroethylene, cause considerable hypomethylation of DNA, some through the activation of oxidative stress pathways.

Foods are known to alter the epigenetics of rats on different diets.Some food components epigenetically increase the levels of DNA repair enzymes such as MGMT and MLH1and p53.Other food components can reduce DNA damage, such as soy isoflavones. In one study, markers for oxidative stress, such as modified nucleotides that can result from DNA damage, were decreased by a 3-week diet supplemented with soy. A decrease in oxidative DNA damage was also observed 2 h after consumption of anthocyanin-rich bilberry (Vaccinium myrtillius L.) pomace extract.

Techniques used to study epigenetics

Epigenetic research uses a wide range of molecular biological techniques to further understanding of epigenetic phenomena, including chromatin immunoprecipitation (together with its large-scale variants ChIP-on-chip and ChIP-Seq), fluorescent in situ hybridization, methylation-sensitive restriction enzymes, DNA adenine methyltransferase identification (DamID) and bisulfite sequencing. Furthermore, the use of bioinformatics methods has a role in computational epigenetics.

Aneuploidy

Aneuploidy is the presence of an aberrant number of chromosomes in a cell, such as 45 or 47 instead of the usual 46 in a human cell. A difference of one or more entire sets of chromosomes is not included. A euploid cell is one that has any number of full chromosomal sets.

Some genetic abnormalities are caused by an extra or missing chromosome. Atypical chromosomal counts can also be found in cancer cells. Aneuploid solid tumours account for roughly 68 percent of all human tumours. When the chromosomes do not separate properly between the two cells during cell division, aneuploidy occurs (nondisjunction). The majority of cases of autosomal aneuploidy result in miscarriage.

Mechanisms

Aneuploidy arises from errors in chromosome segregation, which can go wrong in several ways.

Nondisjunction usually occurs as the result of a weakened mitotic checkpoint, as these checkpoints tend to arrest or delay cell division until all components of the cell are ready to enter the next phase. For example, if a checkpoint is weakened, the cell may fail to ‘notice’ that a chromosome pair is not lined with the spindle apparatus. In such a case, most chromosomes would separate normally (with one chromatid ending up in each cell), while others could fail to separate at all. This would generate a daughter cell lacking a copy and a daughter cell with an extra copy.

Completely inactive mitotic checkpoints may cause nondisjunction at multiple chromosomes, possibly all. Such a scenario could result in each daughter cell possessing a disjoint set of genetic material.

Merotelic attachment occurs when one kinetochore is attached to both mitotic spindle poles. One daughter cell would have a normal complement of chromosomes; the second would lack one. A third daughter cell may end up with the ‘missing’ chromosome.

Multipolar spindles: more than two spindle poles form. Such a mitotic division would result in one daughter cell for each spindle pole; each cell may possess an unpredictable complement of chromosomes.

Monopolar spindle: only a single spindle pole forms. This produces a single daughter cell with its copy number doubled.

tetraploid intermediate may be produced as the end-result of the monopolar spindle mechanism. In such a case, the cell has double the copy number of a normal cell, and produces double the number of spindle poles as well. This results in four daughter cells with an unpredictable complement of chromosomes, but in the normal copy number.

Somatic mosaicism in the nervous system

Mosaicism for aneuploid chromosome content may be part of the constitutional make-up of the mammalian brain. In the normal human brain, brain samples from six individuals ranging from 2–86 years of age had mosaicism for chromosome 21 aneuploidy (average of 4% of neurons analyzed).This low-level aneuploidy appears to arise from chromosomal segregation defects during cell division in neuronal precursor cells,and neurons containing such aneuploid chromosome content reportedly integrate into normal circuits.However, recent research using single-cell sequencing has challenged these findings, and has suggested that aneuploidy in the brain is actually very rare.

Partial aneuploidy

The terms “partial monosomy” and “partial trisomy” are used to describe an imbalance of genetic material caused by loss or gain of part of a chromosome. In particular, these terms would be used in the situation of an unbalanced translocation, where an individual carries a derivative chromosome formed through the breakage and fusion of two different chromosomes. In this situation, the individual would have three copies of part of one chromosome (two normal copies and the portion that exists on the derivative chromosome) and only one copy of part of the other chromosome involved in the derivative chromosome. Robertsonian translocations, for example, account for a very small minority of Down syndrome cases (<5%). The formation of one isochromosome results in partial trisomy of the genes present in the isochromosome and partial monosomy of the genes in the lost arm.

Genome instability

Genome instability (also known as genetic instability or genomic instability) is characterised by a high frequency of mutations in a biological lineage’s genome. Changes in nucleic acid sequences, chromosomal rearrangements, and aneuploidy are all examples of mutations. In bacteria, genome instability does occur. Genome instability is a key element in carcinogenesis in multicellular species, and it’s also a role in several neurological illnesses including amyotrophic lateral sclerosis and myotonic dystrophy in humans.

DNA Replication Defects

In the cell cycle, DNA is usually most vulnerable during replication. The replisome must be able to navigate obstacles such as tightly wound chromatin with bound proteins, single and double stranded breaks which can lead to the stalling of the replication fork. Each protein or enzyme in the replisome must perform its function well to result in a perfect copy of DNA. Mutations of proteins such as DNA polymerase, ligase, can lead to impairment of replication and lead to spontaneous chromosomal exchanges. Proteins such as Tel1, Mec1 (ATR, ATM in humans) can detect single and double-stranded breaks and recruit factors such as Rmr3 helicase to stabilize the replication fork in order to prevent its collapse. Mutations in Tel1, Mec1, and Rmr3 helicase result in a significant increase of chromosomal recombination. ATR responds specifically to stalled replication forks and single-stranded breaks resulting from UV damage while ATM responds directly to double-stranded breaks. These proteins also prevent progression into mitosis by inhibiting the firing of late replication origins until the DNA breaks are fixed by phosphorylating CHK1, CHK2 which results in a signaling cascade arresting the cell in S-phase. For single stranded breaks, replication occurs until the location of the break, then the other strand is nicked to form a double stranded break, which can then be repaired by Break Induced Replication or homologous recombination using the sister chromatid as an error-free template. In addition to S-phase checkpoints, G1 and G2 checkpoints exist to check for transient DNA damage which could be caused by mutagens such as UV damage. An example is the Saccharomyces pombe gene rad9 which arrests the cells in late S/G2 phase in the presence of DNA damage caused by radiation. The yeast cells with defective rad9 failed to arrest following radiation, continued cell division and died rapidly while the cells with wild-type rad9 successfully arrested in late S/G2 phase and remained viable. The cells that arrested were able to survive due to the increased time in S/G2 phase allowing for DNA repair enzymes to function fully.

Fragile Sites

There are hotspots in the genome where DNA sequences are prone to gaps and breaks after inhibition of DNA synthesis such as in the aforementioned checkpoint arrest. These sites are called fragile sites, and can occur commonly as naturally present in most mammalian genomes or occur rarely as a result of mutations, such as DNA-repeat expansion. Rare fragile sites can lead to genetic disease such as fragile X mental retardation syndrome, myotonic dystrophy, Friedrich’s ataxia, and Huntington’s disease, most of which are caused by expansion of repeats at the DNA, RNA, or protein level. Although, seemingly harmful, these common fragile sites are conserved all the way to yeast and bacteria. These ubiquitous sites are characterized by trinucleotide repeats, most commonly CGG, CAG, GAA, and GCN. These trinucleotide repeats can form into hairpins, leading to difficulty of replication. Under replication stress, such as defective machinery or further DNA damage, DNA breaks and gaps can form at these fragile sites. Using a sister chromatid as repair is not a fool-proof backup as the surrounding DNA information of the n and n+1 repeat is virtually the same, leading to copy number variation. For example, the 16th copy of CGG might be mapped to the 13th copy of CGG in the sister chromatid since the surrounding DNA is both CGGCGGCGG…, leading to 3 extra copies of CGG in the final DNA sequence.

Multiple myeloma

Multiple myeloma (MM), also known as plasma cell myeloma and simply myeloma, is a cancer of plasma cells, a type of white blood cell that normally produces antibodies. Often, no symptoms are noticed initially. As it progresses, bone painanemiakidney dysfunction, and infections may occur. Complications may include amyloidosis.

The cause of multiple myeloma is unknown. Risk factors include obesityradiation exposure, family history, and certain chemicals. Multiple myeloma may develop from monoclonal gammopathy of undetermined significance that progresses to smoldering myeloma. The abnormal plasma cells produce abnormal antibodies, which can cause kidney problems and overly thick blood. The plasma cells can also form a mass in the bone marrow or soft tissue. When one tumor is present, it is called a plasmacytoma; more than one is called multiple myeloma. Multiple myeloma is diagnosed based on blood or urine tests finding abnormal antibodies, bone marrow biopsy finding cancerous plasma cells, and medical imaging finding bone lesions. Another common finding is high blood calcium levels.

Multiple myeloma is considered treatable, but generally incurable. Remissions may be brought about with steroidschemotherapytargeted therapy, and stem cell transplant. Bisphosphonates and radiation therapy are sometimes used to reduce pain from bone lesions.

Globally, multiple myeloma affected 488,000 people and resulted in 101,100 deaths in 2015.In the United States, it develops in 6.5 per 100,000 people per year and 0.7% of people are affected at some point in their lives. It usually occurs around the age of 60 and is more common in men than women.It is uncommon before the age of 40. Without treatment, the median survival in the prechemotherapy era was about 7 months. After the introduction of chemotherapy, prognosis improved significantly with a median survival of 24 to 30 months and a 10-year survival rate of 3%. Even further improvements in prognosis have occurred because of the introduction of newer biologic therapies and better salvage options, with median survivals now exceeding 60 to 90 months. With current treatments, survival is usually 4–5 years. The five-year survival rate is about 54%. The word myeloma is from the Greek myelo- meaning “marrow” and -oma meaning “tumor”.

Risk factors

Studies have reported a familial predisposition to myeloma. Hyperphosphorylation of a number of proteins—the paratarg proteins—a tendency that is inherited in an autosomal dominant manner, appears a common mechanism in these families. This tendency is more common in African-American with myeloma and may contribute to the higher rates of myeloma in this group.

Plasma cell

Plasma cells, also known as plasma B cells, are white blood cells that are produced by B lymphocytes in the lymphoid organs and express huge amounts of proteins called antibodies in response to certain substances called antigens. These antibodies are delivered from plasma cells to the target antigen (foreign substance) through blood plasma and the lymphatic system, where they begin neutralisation or destruction. B cells differentiate into plasma cells, which produce antibody molecules that are very similar to the precursor B cell’s receptors.

Structure

Plasma cells are large lymphocytes with abundant cytoplasm and a characteristic appearance on light microscopy. They have basophilic cytoplasm and an eccentric nucleus with heterochromatin in a characteristic cartwheel or clock face arrangement. Their cytoplasm also contains a pale zone that on electron microscopy contains an extensive Golgi apparatus and centrioles (EM picture). Abundant rough endoplasmic reticulum combined with a well-developed Golgi apparatus makes plasma cells well-suited for secreting immunoglobulins. Other organelles in a plasma cell include ribosomes, lysosomes, mitochondria, and the plasma membrane.

Surface antigens

Terminally differentiated plasma cells express relatively few surface antigens, and do not express common pan-B cell markers, such as CD19 and CD20. Instead, plasma cells are identified through flow cytometry by their additional expression of CD138CD78, and the Interleukin-6 receptor. In humans, CD27 is a good marker for plasma cells; naïve B cells are CD27-, memory B-cells are CD27+ and plasma cells are CD27++.

The surface antigen CD138 (syndecan-1) is expressed at high levels.

Another important surface antigen is CD319 (SLAMF7). This antigen is expressed at high levels on normal human plasma cells. It is also expressed on malignant plasma cells in multiple myeloma. Compared with CD138, which disappears rapidly ex vivo, the expression of CD319 is considerably more stable.

Development

After leaving the bone marrow, the B cell acts as an antigen-presenting cell (APC) and internalizes offending antigens, which are taken up by the B cell through receptor-mediated endocytosis and processed. Pieces of the antigen (which are now known as antigenic peptides) are loaded onto MHC II molecules, and presented on its extracellular surface to CD4+ T cells (sometimes called T helper cells). These T cells bind to the MHC II-antigen molecule and cause activation of the B cell. This is a type of safeguard to the system, similar to a two-factor authentication method. First, the B cells must encounter a foreign antigen and are then required to be activated by T helper cells before they differentiate into specific cells.

Upon stimulation by a T cell, which usually occurs in germinal centers of secondary lymphoid organs such as the spleen and lymph nodes, the activated B cell begins to differentiate into more specialized cells. Germinal center B cells may differentiate into memory B cells or plasma cells. Most of these B cells will become plasmablasts (or “immature plasma cells”), and eventually plasma cells, and begin producing large volumes of antibodies. Some B cells will undergo a process known as affinity maturation.This process favors, by selection for the ability to bind antigen with higher affinity, the activation and growth of B cell clones able to secrete antibodies of higher affinity for the antigen.

Immature plasma cells[edit]

The most immature blood cell that is considered of plasma cell lineage is the plasmablast. Plasmablasts secrete more antibodies than B cells, but less than plasma cells. They divide rapidly and are still capable of internalizing antigens and presenting them to T cells. A cell may stay in this state for several days, and then either die or irrevocably differentiate into a mature, fully differentiated plasma cell. Differentiation of mature B cells into plasma cells is dependent upon the transcription factors Blimp-1/PRDM1 and IRF4

B cell

B cells, also known as B lymphocytes, are a type of white blood cell of the lymphocyte subtype. They function in the humoral immunity component of the adaptive immune system. B cells produce antibody molecules; however, these antibodies are not secreted. Rather, they are inserted into the plasma membrane where they serve as a part of B-cell receptors. When a naïve or memory B cell is activated by an antigen, it proliferates and differentiates into an antibody-secreting effector cell, known as a plasmablast or plasma cell. Additionally, B cells present antigens (they are also classified as professional antigen-presenting cells (APCs)) and secrete cytokines. In mammals, B cells mature in the bone marrow, which is at the core of most bones. In birds, B cells mature in the bursa of Fabricius, a lymphoid organ where they were first discovered by Chang and Glick, which is why the ‘B’ stands for bursa and not bone marrow as commonly believed.

B cells, unlike the other two classes of lymphocytes, T cells and natural killer cells, express B cell receptors (BCRs) on their cell membrane. BCRs allow the B cell to bind to a specific antigen, against which it will initiate an antibody response.

Antigen presentation is the process of a cell displaying antigen bound by major histocompatibility complex (MHC) proteins on its surface; this is known as antigen presentation. These complexes may be recognised by T cells via their T cell receptors (TCRs). Antigens are processed by APCs and presented to T-cells.

Antigens can be presented in a variety of ways by almost all cell types. They can be found in a wide range of tissues. Professional antigen-presenting cells, such as macrophages, B cells, and dendritic cells, present external antigens to helper T cells, whereas virus-infected cells (or cancer cells) can present cytotoxic T cells with antigens produced inside the cell.

Activation

B cell activation: from immature B cell to plasma cell or memory B cell

B cell activation occurs in the secondary lymphoid organs (SLOs), such as the spleen and lymph nodes. After B cells mature in the bone marrow, they migrate through the blood to SLOs, which receive a constant supply of antigen through circulating lymph. At the SLO, B cell activation begins when the B cell binds to an antigen via its BCR. Although the events taking place immediately after activation have yet to be completely determined, it is believed that B cells are activated in accordance with the kinetic segregation mode, initially determined in T lymphocytes. This model denotes that before antigen stimulation, receptors diffuse through the membrane coming into contact with Lck and CD45 in equal frequency, rendering a net equilibrium of phosphorylation and non-phosphorylation. It is only when the cell comes in contact with an antigen presenting cell that the larger CD45 is displaced due to the close distance between the two membranes. This allows for net phosphorylation of the BCR and the initiation of the signal transduction pathway. Of the three B cell subsets, FO B cells preferentially undergo T cell-dependent activation while MZ B cells and B1 B cells preferentially undergo T cell-independent activation.

B cell activation is enhanced through the activity of CD21, a surface receptor in complex with surface proteins CD19 and CD81 (all three are collectively known as the B cell coreceptor complex). When a BCR binds an antigen tagged with a fragment of the C3 complement protein, CD21 binds the C3 fragment, co-ligates with the bound BCR, and signals are transduced through CD19 and CD81 to lower the activation threshold of the cell.

Antigen-presenting cell

Antigen presentation is the process of a cell displaying antigen bound by major histocompatibility complex (MHC) proteins on its surface; this is known as antigen presentation. These complexes may be recognised by T cells via their T cell receptors (TCRs). Antigens are processed by APCs and presented to T-cells.

Antigens can be presented in a variety of ways by almost all cell types. They can be found in a wide range of tissues. Professional antigen-presenting cells, such as macrophages, B cells, and dendritic cells, present external antigens to helper T cells, whereas virus-infected cells (or cancer cells) can present cytotoxic T cells with antigens produced inside the cell.

Types and functions

Antigen-presenting cells fall into two categories: professional and non-professional. Those that express MHC class II molecules along with co-stimulatory molecules and pattern recognition receptors are often called professional antigen-presenting cells. The non-professional APCs express MHC class I molecules.

T cells must be activated before they can divide and perform their function. This is achieved by interacting with a professional APC which presents an antigen recognized by their T cell receptor. The APC involved in activating T cells is usually a dendritic cell. T cells cannot recognize (and therefore cannot respond to) “free” or soluble antigens. They can only recognize and respond to antigen that has been processed and presented by cells via carrier molecules like MHC molecules. Helper T cells can recognize exogenous antigen presented on MHC class II; cytotoxic T cells can recognize endogenous antigen presented on MHC class I. Most cells in the body can present antigen to CD8+ cytotoxic T cells via MHC class I; however, the term “antigen-presenting cell” is often used specifically to describe professional APCs. Such cells express MHC class I and MHC class II molecules and can stimulate CD4+ helper T cells as well as cytotoxic T cells.[2][3]

APCs can also present foreign and self lipids to T cells and NK cells by using the CD1 family of proteins, which are structurally similar to the MHC class I family.

Professional APCs

Professional APCs specialize in presenting antigens to T cells. They are very efficient at internalizing antigens, either by phagocytosis (e.g. macrophages), or by receptor-mediated endocytosis (B cells), processing the antigen into peptide fragments and then displaying those peptides (bound to a class II MHC molecule) on their membrane. The T cell recognizes and interacts with the antigen-class II MHC molecule complex on the membrane of the antigen-presenting cell. An additional co-stimulatory signal is then produced by the antigen-presenting cell, leading to activation of the T cell. The expression of co-stimulatory molecules and MHC class II are defining features of professional APCs. All professional APCs also express MHC class I molecules as well.

The main types of professional antigen-presenting cells are dendritic cells, macrophages and B cells.

Dendritic cells (DCs)

Dendritic cells have the broadest range of antigen presentation and are necessary for activation of naive T cells. DCs present antigen to both helper and cytotoxic T cells. They can also perform cross-presentation, a process by which they present exogenous antigen on MHC class I molecules to cytotoxic T cells. Cross-presentation allows for the activation of these T cells. Dendritic cells also play a role in peripheral tolerance, which contributes to prevention of auto-immune disease.

Prior to encountering foreign antigen, dendritic cells express very low levels of MHC class II and co-stimulatory molecules on their cell surface. These immature dendritic cells are ineffective at presenting antigen to T helper cells. Once a dendritic cell’s pattern-recognition receptors recognize a pathogen-associated molecular pattern, antigen is phagocytosed and the dendritic cell becomes activated, upregulating the expression of MHC class II molecules. It also upregulates several co-stimulatory molecules required for T cell activation, including CD40 and B7. The latter can interact with CD28 on the surface of a CD4+ T cell. The dendritic cell is then a fully mature professional APC. It moves from the tissue to lymph nodes, where it encounters and activates T cells.

Phagocytosis

Phagocytosis (from the Ancient Greek (phagein) ‘to eat’ and o, (kytos) ‘cell’) is the process by which a cell uses its plasma membrane to ingest a big particle (0.5 m), resulting in the formation of an internal compartment known as the phagosome. It’s a specific sort of endocytosis. A phagocyte is a cell that performs phagocytosis.

The act of a phagocyte absorbing a pathogen.
Phagocytosis is a major mechanism employed by a multicellular organism’s immune system to eliminate infections and cell debris. The phagosome then digests the ingested substance. Objects that can be phagocytized include bacteria, dead tissue cells, and microscopic mineral particles. Phagocytosis is a type of phagocytosis used by some protozoa.

Professional phagocytic cells

Light microscopic video sequence of a neutrophil from human blood phagocytosing a bacterium

Neutrophilsmacrophagesmonocytesdendritic cellsosteoclasts and eosinophils can be classified as professional phagocytes. The first three have the greatest role in immune response to most infections.

The role of neutrophils is patrolling the bloodstream and rapid migration to the tissues in large numbers only in case of infection. There they have direct microbicidal effect by phagocytosis. After ingestion, neutrophils are efficient in intracellular killing of pathogens. Neutrophils phagocytose mainly via the Fcγ receptors and complement receptors 1 and 3. The microbicidal effect of neutrophils is due to a large repertoire of molecules present in pre-formed granules. Enzymes and other molecules prepared in these granules are proteases, such as collagenasegelatinase or serine proteasesmyeloperoxidaselactoferrin and antibiotic proteins. Degranulation of these into the phagosome, accompanied by high reactive oxygen species production (oxidative burst) is highly microbicidal.

Monocytes, and the macrophages that mature from them, leave blood circulation to migrate through tissues. There they are resident cells and form a resting barrier.Macrophages initiate phagocytosis by mannose receptorsscavenger receptorsFcγ receptors and complement receptors 1, 3 and 4. Macrophages are long-lived and can continue phagocytosis by forming new lysosomes.

Dendritic cells also reside in tissues and ingest pathogens by phagocytosis. Their role is not killing or clearance of microbes, but rather breaking them down for antigen presentation to the cells of the adaptive immune system.

Initiating receptors

Receptors for phagocytosis can be divided into two categories by recognised molecules. The first, opsonic receptors, are dependent on opsonins. Among these are receptors that recognise the Fc part of bound IgG antibodies, deposited complement or receptors, that recognise other opsonins of cell or plasma origin. Non-opsonic receptors include lectin-type receptors, Dectin receptor, or scavenger receptors. Some phagocytic pathways require a second signal from pattern recognition receptors (PRRs) activated by attachment to pathogen-associated molecular patterns (PAMPS), which leads to NF-κB activation.

Fcγ receptors

Fcγ receptors recognise IgG coated targets. The main recognised part is the Fc fragment. The molecule of the receptor contain an intracellular ITAM domain or associates with an ITAM-containing adaptor molecule. ITAM domains transduce the signal from the surface of the phagocyte to the nucleus. For example, activating receptors of human macrophages are FcγRIFcγRIIA, and FcγRIII. Fcγ receptor mediated phagocytosis includes formation of protrusions of the cell called a ‘phagocytic cup’ and activates an oxidative burst in neutrophils.

Complement receptors

These receptors recognise targets coated in C3bC4b and C3bi from plasma complement. The extracellular domain of the receptors contains a lectin-like complement-binding domain. Recognition by complement receptors is not enough to cause internalisation without additional signals. In macrophages, the CR1CR3 and CR4 are responsible for recognition of targets. Complement coated targets are internalised by ‘sinking’ into the phagocyte membrane, without any protrusion

Apoptosis

Apoptosis (from Ancient Greek ἀπόπτωσιςapóptōsis, “falling off”) is a form of programmed cell death that occurs in multicellular organismsBiochemical events lead to characteristic cell changes (morphology) and death. These changes include blebbingcell shrinkagenuclear fragmentationchromatin condensationDNA fragmentation, and mRNA decay. The average adult human loses between 50 and 70 billion cells each day due to apoptosis. For an average human child between the ages of 8 and 14, approximately 20–30 billion cells die per day.

In contrast to necrosis, which is a form of traumatic cell death that results from acute cellular injury, apoptosis is a highly regulated and controlled process that confers advantages during an organism’s life cycle. For example, the separation of fingers and toes in a developing human embryo occurs because cells between the digits undergo apoptosis. Unlike necrosis, apoptosis produces cell fragments called apoptotic bodies that phagocytes are able to engulf and remove before the contents of the cell can spill out onto surrounding cells and cause damage to them.

Because apoptosis cannot stop once it has begun, it is a highly regulated process. Apoptosis can be initiated through one of two pathways. In the intrinsic pathway the cell kills itself because it senses cell stress, while in the extrinsic pathway the cell kills itself because of signals from other cells. Weak external signals may also activate the intrinsic pathway of apoptosis. Both pathways induce cell death by activating caspases, which are proteases, or enzymes that degrade proteins. The two pathways both activate initiator caspases, which then activate executioner caspases, which then kill the cell by degrading proteins indiscriminately.

In addition to its importance as a biological phenomenon, defective apoptotic processes have been implicated in a wide variety of diseases. Excessive apoptosis causes atrophy, whereas an insufficient amount results in uncontrolled cell proliferation, such as cancer. Some factors like Fas receptors and caspases promote apoptosis, while some members of the Bcl-2 family of proteins inhibit apoptosis.

The initiation of apoptosis is tightly regulated by activation mechanisms, because once apoptosis has begun, it inevitably leads to the death of the cell. The two best-understood activation mechanisms are the intrinsic pathway (also called the mitochondrial pathway) and the extrinsic pathway. The intrinsic pathway is activated by intracellular signals generated when cells are stressed and depends on the release of proteins from the intermembrane space of mitochondria. The extrinsic pathway is activated by extracellular ligands binding to cell-surface death receptors, which leads to the formation of the death-inducing signaling complex (DISC).

A cell initiates intracellular apoptotic signaling in response to a stress, which may bring about cell suicide. The binding of nuclear receptors by glucocorticoids, heat, radiation viral infection, hypoxia, increased intracellular concentration of free fatty acids and increased intracellular calcium concentration, for example, by damage to the membrane, can all trigger the release of intracellular apoptotic signals by a damaged cell. A number of cellular components, such as poly ADP ribose polymerase, may also help regulate apoptosis. Single cell fluctuations have been observed in experimental studies of stress induced apoptosis.

Before the actual process of cell death is precipitated by enzymes, apoptotic signals must cause regulatory proteins to initiate the apoptosis pathway. This step allows those signals to cause cell death, or the process to be stopped, should the cell no longer need to die. Several proteins are involved, but two main methods of regulation have been identified: the targeting of mitochondria functionality, or directly transducing the signal via adaptor proteins to the apoptotic mechanisms. An extrinsic pathway for initiation identified in several toxin studies is an increase in calcium concentration within a cell caused by drug activity, which also can cause apoptosis via a calcium binding protease calpain.

Cell culture

Cell culture is the process by which cells are grown under controlled conditions, generally outside their natural environment. After the cells of interest have been isolated from living tissue, they can subsequently be maintained under carefully controlled conditions. These conditions vary for each cell type, but generally consist of a suitable vessel with a substrate or medium that supplies the essential nutrients (amino acidscarbohydratesvitaminsminerals), growth factorshormones, and gases (CO2O2), and regulates the physio-chemical environment (pH bufferosmotic pressuretemperature). Most cells require a surface or an artificial substrate (adherent or monolayer culture) whereas others can be grown free floating in culture medium (suspension culture). The lifespan of most cells is genetically determined, but some cell culturing cells have been “transformed” into immortal cells which will reproduce indefinitely if the optimal conditions are provided.

In practice, the term “cell culture” now refers to the culturing of cells derived from multicellular eukaryotes, especially animal cells, in contrast with other types of culture that also grow cells, such as plant tissue culturefungal culture, and microbiological culture (of microbes). The historical development and methods of cell culture are closely interrelated to those of tissue culture and organ cultureViral culture is also related, with cells as hosts for the viruses.

The laboratory technique of maintaining live cell lines (a population of cells descended from a single cell and containing the same genetic makeup) separated from their original tissue source became more robust in the middle 20th century.

Concepts in mammalian cell culture

Cells can be isolated from tissues for ex vivo culture in several ways. Cells can be easily purified from blood; however, only the white cells are capable of growth in culture. Cells can be isolated from solid tissues by digesting the extracellular matrix using enzymes such as collagenasetrypsin, or pronase, before agitating the tissue to release the cells into suspension.[6][7] Alternatively, pieces of tissue can be placed in growth media, and the cells that grow out are available for culture. This method is known as explant culture.

Cells that are cultured directly from a subject are known as primary cells. With the exception of some derived from tumors, most primary cell cultures have limited lifespan.

An established or immortalized cell line has acquired the ability to proliferate indefinitely either through random mutation or deliberate modification, such as artificial expression of the telomerase gene. Numerous cell lines are well established as representative of particular cell types.

Maintaining cells in culture

For the majority of isolated primary cells, they undergo the process of senescence and stop dividing after a certain number of population doublings while generally retaining their viability (described as the Hayflick limit).A bottle of DMEM cell culture medium

Aside from temperature and gas mixture, the most commonly varied factor in culture systems is the cell growth medium. Recipes for growth media can vary in pH, glucose concentration, growth factors, and the presence of other nutrients. The growth factors used to supplement media are often derived from the serum of animal blood, such as fetal bovine serum (FBS), bovine calf serum, equine serum, and porcine serum. One complication of these blood-derived ingredients is the potential for contamination of the culture with viruses or prions, particularly in medical biotechnology applications. Current practice is to minimize or eliminate the use of these ingredients wherever possible and use human platelet lysate (hPL). This eliminates the worry of cross-species contamination when using FBS with human cells. hPL has emerged as a safe and reliable alternative as a direct replacement for FBS or other animal serum. In addition, chemically defined media can be used to eliminate any serum trace (human or animal), but this cannot always be accomplished with different cell types. Alternative strategies involve sourcing the animal blood from countries with minimum BSE/TSE risk, such as The United States, Australia and New Zealand, and using purified nutrient concentrates derived from serum in place of whole animal serum for cell culture.

Plating density (number of cells per volume of culture medium) plays a critical role for some cell types. For example, a lower plating density makes granulosa cells exhibit estrogen production, while a higher plating density makes them appear as progesterone-producing theca lutein cells.

Cells can be grown either in suspension or adherent cultures. Some cells naturally live in suspension, without being attached to a surface, such as cells that exist in the bloodstream. There are also cell lines that have been modified to be able to survive in suspension cultures so they can be grown to a higher density than adherent conditions would allow. Adherent cells require a surface, such as tissue culture plastic or microcarrier, which may be coated with extracellular matrix (such as collagen and laminin) components to increase adhesion properties and provide other signals needed for growth and differentiation. Most cells derived from solid tissues are adherent. Another type of adherent culture is organotypic culture, which involves growing cells in a three-dimensional (3-D) environment as opposed to two-dimensional culture dishes. This 3D culture system is biochemically and physiologically more similar to in vivo tissue, but is technically challenging to maintain because of many factors (e.g. diffusion).

Pipette

A pipette (sometimes called pipet) is a laboratory tool used to transfer a measured volume of liquid, generally as a media dispenser, in chemistry, biology, and medicine. Pipettes are available in a variety of designs and levels of accuracy and precision, ranging from simple single-piece glass pipettes to more complex adjustable or electronic pipettes. Many pipettes work by drawing up and dispensing liquid by establishing a partial vacuum above the liquid-holding chamber and selectively releasing this vacuum. The precision of measurements varies substantially depending on the equipment.

Air displacement micropipettes

Air displacement pipette Single-Channel Pipettes designed to handle 1–5ml and 100–1000µl with locking systemA 5,000 μl (5 ml) pipette, with the volume to be transferred indicated. 500 means that the amount transferred is 5,000 μl.A 1,000 μl (1 ml) pipette, with the volume to be transferred indicated.A variety of pipette tips

Air displacement micropipettes are a type of adjustable micropipette that deliver a measured volume of liquid; depending on size, it could be between about 0.1 µl to 1,000 µl (1 ml). These pipettes require disposable tips that come in contact with the fluid. The four standard sizes of micropipettes correspond to four different disposable tip colors

These pipettes operate by piston-driven air displacement. A vacuum is generated by the vertical travel of a metal or ceramic piston within an airtight sleeve. As the piston moves upward, driven by the depression of the plunger, a vacuum is created in the space left vacant by the piston. The liquid around the tip moves into this vacuum (along with the air in the tip) and can then be transported and released as necessary. These pipettes are capable of being very precise and accurate. However, since they rely on air displacement, they are subject to inaccuracies caused by the changing environment, particularly temperature and user technique. For these reasons, this equipment must be carefully maintained and calibrated, and users must be trained to exercise correct and consistent technique.

The micropipette was invented and patented in 1960 by Dr. Heinrich Schnitger in Marburg, Germany. Afterwards, the co-founder of the biotechnology company Eppendorf, Dr. Heinrich Netheler, inherited the rights and initiated the global and general use of micropipettes in labs. In 1972, the adjustable micropipette was invented at the University of Wisconsin-Madison by several people, primarily Warren Gilson and Henry Lardy.

Types of air displacement pipettes include:

  • adjustable or fixed
  • volume handled
  • Single-channel, multi-channel or repeater
  • conical tips or cylindrical tips
  • standard or locking
  • manual or electronic
  • manufacturer

Irrespective of brand or expense of pipette, every micropipette manufacturer recommends checking the calibration at least every six months, if used regularly. Companies in the drug or food industries are required to calibrate their pipettes quarterly (every three months). Schools which are conducting chemistry classes can have this process annually. Those studying forensics and research where a great deal of testing is commonplace will perform monthly calibrations.

Electronic pipette

To minimize the possible development of musculoskeletal disorders due to repetitive pipetting, electronic pipettes commonly replace the mechanical version.

Positive displacement pipette

These are similar to air displacement pipettes, but are less commonly used and are used to avoid contamination and for volatile or viscous substances at small volumes, such as DNA. The major difference is that the disposable tip is a microsyringe (plastic), composed of a capillary and a piston (movable inner part) which directly displaces the liquid.

Clothing technology

Clothing technology includes production, materials, and developed and implemented improvements. Major changes in the manufacture and distribution of clothing are included in the timeline of clothing and textiles technology.

The usage of technology has drastically altered clothes and fashion in the contemporary age, from clothing in the ancient world through modernity. The manufacturing of commodities changed as a result of industrialization. In many countries, handcrafted goods have been substantially displaced by factory-produced commodities purchased on assembly lines in a consumer culture. Man-made fabrics like polyester, nylon, and vinyl, as well as features like zippers and velcro, are among the innovations.

Gore-Tex

Gore-Tex is a waterproof, breathable fabric membrane and registered trademark of W. L. Gore & Associates. Invented in 1969, Gore-Tex can repel liquid water while allowing water vapor to pass through and is designed to be a lightweight, waterproof fabric for all-weather use. It is composed of stretched polytetrafluoroethylene (PTFE), which is more commonly known by the generic trademark Teflon. The material is formally known as the generic term expanded PTFE (ePTFE).

Gore-Tex materials are typically based on thermo-mechanically expanded PTFE and other fluoropolymer products. They are used in a wide variety of applications such as high-performance fabrics, medical implantsfilter media, insulation for wires and cables, gaskets, and sealants. However, Gore-Tex fabric is best known for its use in protective, yet breathable, rainwear.

The simplest sort of rain wear is a two layer sandwich. The outer layer is typically woven nylon or polyester and provides strength. The inner one is polyurethane (abbreviated: PU), and provides water resistance, at the cost of breathability.

Early Gore-Tex fabric replaced the inner layer of PU with a thin, porous fluoropolymer membrane (Teflon) coating that is bonded to a fabric. This membrane had about 9 billion pores per square inch (around 1.4 billion pores per square centimeter). Each pore is approximately 120,000 the size of a water droplet, making it impenetrable to liquid water while still allowing the more volatile water vapour molecules to pass through.

The outer layer of Gore-Tex fabric is coated on the outside with a Durable Water Repellent (DWR) treatment. The DWR prevents the main outer layer from becoming wet, which would reduce the breathability of the whole fabric. However, the DWR is not responsible for the jacket being waterproof. Without the DWR, the outer layer would become soaked, there would be no breathability, and the wearer’s sweat being produced on the inside would fail to evaporate, leading to dampness there. This might give the appearance that the fabric is leaking, but it is not. Wear and cleaning will reduce the performance of Gore-Tex fabric by wearing away this Durable Water Repellent (DWR) treatment. The DWR can be reinvigorated by tumble drying the garment or ironing on a low setting.

Gore requires that all garments made from their material have taping over the seams, to eliminate leaks. Gore’s sister product, is similar to Gore-Tex in being windproof and breathable and it can stretch but it is not waterproof. The Gore naming system does not imply specific technology or material but instead specific set of performance characteristics.